45 research outputs found

    Interactions between the neuromodulatory systems and the amygdala: exploratory survey using the Allen Mouse Brain Atlas.

    Get PDF
    Neuromodulatory systems originate in nuclei localized in the subcortical region of the brain and control fundamental behaviors by interacting with many areas of the central nervous system. An exploratory survey of the cholinergic, dopaminergic, noradrenergic, and serotonergic receptor expression energy in the amygdala, and in the neuromodulatory areas themselves was undertaken using the Allen Mouse Brain Atlas. The amygdala was chosen because of its importance in cognitive behavior and its bidirectional interaction with the neuromodulatory systems. The gene expression data of 38 neuromodulatory receptor subtypes were examined across 13 brain regions. The substantia innominata of the basal forebrain and regions of the amygdala had the highest amount of receptor expression energy for all four neuromodulatory systems examined. The ventral tegmental area also displayed high receptor expression of all four neuromodulators. In contrast, the locus coeruleus displayed low receptor expression energy overall. In general, cholinergic receptor expression was an order of magnitude greater than other neuromodulatory receptors. Since the nuclei of these neuromodulatory systems are thought to be the source of specific neurotransmitters, the projections from these nuclei to target regions may be inferred by receptor expression energy. The comprehensive analysis revealed many connectivity relations and receptor localization that had not been previously reported. The methodology presented here may be applied to other neural systems with similar characteristics, and to other animal models as these brain atlases become available

    Model Cards for Model Reporting

    Full text link
    Trained machine learning models are increasingly used to perform high-impact tasks in areas such as law enforcement, medicine, education, and employment. In order to clarify the intended use cases of machine learning models and minimize their usage in contexts for which they are not well suited, we recommend that released models be accompanied by documentation detailing their performance characteristics. In this paper, we propose a framework that we call model cards, to encourage such transparent model reporting. Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups (e.g., race, geographic location, sex, Fitzpatrick skin type) and intersectional groups (e.g., age and race, or sex and Fitzpatrick skin type) that are relevant to the intended application domains. Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. While we focus primarily on human-centered machine learning models in the application fields of computer vision and natural language processing, this framework can be used to document any trained machine learning model. To solidify the concept, we provide cards for two supervised models: One trained to detect smiling faces in images, and one trained to detect toxic comments in text. We propose model cards as a step towards the responsible democratization of machine learning and related AI technology, increasing transparency into how well AI technology works. We hope this work encourages those releasing trained machine learning models to accompany model releases with similar detailed evaluation numbers and other relevant documentation

    Nomenclature and heterogeneity : consequences for the use of mesenchymal stem cells in regenerative medicine

    Get PDF
    Mesenchymal stem cells (MSCs) are in development for many clinical indications, based both on “stem” properties (tissue repair or regeneration) and on signalling repertoire (immunomodulatory and anti-inflammatory effects). Potential conflation of MSC properties with those of tissue-derived stromal cells presents difficulties in comparing study outcomes and represents a source of confusion in cell therapy development. Cultured MSCs demonstrate significant heterogeneity in clonogenicity and multi-lineage differentiation potential. However in vivo biology of MSCs includes native functions unrelated to regenerative medicine applications, so do nomenclature and heterogeneity matter? In this perspective we examine some consequences of the nomenclature debate and heterogeneity of MSCs. Regulatory expectations are considered, emphasising that product development should prioritise detailed characterisation of therapeutic cell populations for specific indications

    Investigating the Interactions of Neuromodulators: A Computational Modeling, Game Theoretic, Pharmacological, Embodiment, and Neuroinformatics Perspective

    No full text
    Neuromodulatory systems originate in nuclei localized in the subcortical region of the brain and control fundamental behaviors by interacting with many areas of the central nervous system. Much is known about neuromodulators, but their structural and functional implications in fundamental behavior remain unclear. This dissertation set out to investigate the interaction of neuromodulators and their role in modulating behaviors by combining methodologies in computational modeling, game theory, embodiment, pharmacological manipulations, and neuroinformatics. The first study introduces a novel computational model that predicts how dopamine and serotonin shape competitive and cooperative behavior in a game theoretic environment. The second study adopted the model from the first study to gauge how humans react to adaptive agents, as well as measuring the influence of embodied agents on game play. The third study investigates functional activity of these neuromodulatory circuits by exploring the expression energy of neuromodulatory receptors using the Allen Brain Atlas. The fourth study features a web application known as the Allen Brain Atlas-Drive Visualization, which provides users with a quick and intuitive way to survey large amounts of expression energy data across multiple brain regions of interest. Finally, the last study continues exploring the interaction of dopamine and serotonin by focusing specifically on the reward circuit using the Allen Brain Atlas. The first two studies provide a more behavioral understanding of how dopamine and serotonin interacts, what that interaction might look like in the brain, and how those interactions transpire in complex situations. The remaining three studies uses a neuroinformatics approach to reveal the underlying empirical structure and function behind the interactions of dopamine, serotonin, acetylcholine and norepinephrine in brain regions responsible for the behaviors discussed in the first two studies. When combined, each study provides an additional level of understanding about neuromodulators. This is of great importance because neuroscience simply cannot be explained through one methodology. It is going to take a multifaceted effort, like the one presented in this dissertation, to obtain a deeper understanding of the complexity behind neuromodulators and their structural and functional relationship with each other

    Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    Get PDF
    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources
    corecore